首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8534篇
  免费   896篇
  国内免费   688篇
化学   5971篇
晶体学   103篇
力学   474篇
综合类   61篇
数学   831篇
物理学   2678篇
  2024年   4篇
  2023年   117篇
  2022年   131篇
  2021年   287篇
  2020年   294篇
  2019年   290篇
  2018年   206篇
  2017年   221篇
  2016年   337篇
  2015年   316篇
  2014年   401篇
  2013年   614篇
  2012年   768篇
  2011年   767篇
  2010年   535篇
  2009年   471篇
  2008年   578篇
  2007年   506篇
  2006年   497篇
  2005年   420篇
  2004年   359篇
  2003年   296篇
  2002年   293篇
  2001年   196篇
  2000年   165篇
  1999年   153篇
  1998年   141篇
  1997年   111篇
  1996年   102篇
  1995年   86篇
  1994年   58篇
  1993年   63篇
  1992年   62篇
  1991年   58篇
  1990年   31篇
  1989年   27篇
  1988年   23篇
  1987年   21篇
  1986年   16篇
  1985年   20篇
  1984年   14篇
  1983年   9篇
  1982年   12篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1977年   3篇
  1973年   3篇
  1971年   8篇
  1970年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
在氩气气氛和1173 K保温条件下对La0.63 Gd0.2 Mg0.17Ni3.1 Co0.3 Al0.1储氢合金进行不同时间(t=8 ~168 h)的热处理,采用电感耦合等离子发射光谱(ICP)、X射线衍射(XRD)、电子探针显微分析方法(EPMA)和电化学测试分析方法对比研究了退火时间对合金显微组织演化和电化学性能的影响.研究结果表明,铸态合金组织由Ce2 Ni7型、Gd2Co7型、Pr5 Co19型、PuNi3型和CaCu5型相组成,其Ce2 Ni7型相的丰度为78.9%,随退火时间的延长,退火合金中Ce2 Ni7型相的丰度逐渐增加,当退火时间t=168 h时其相丰度达到94.5%,Ce2 Ni7型相结构的晶胞参数和晶胞体积随退火时间增加而减小.电化学测试分析表明,退火合金电极的电化学性能与Ce2 Ni7型相的丰度有密切关系,退火时间对合金电极的活化性能影响不大,但合金电极放电容量随退火时间的延长逐渐提高,当t=168 h时,合金电极放电容量达到最大值386.8mAh·g-1;退火时间对合金电极循环稳定性的提高和改善有不同程度的影响,当退火时间t=16~168 h时,经100次充放电循环后,其电极容量保持率S100=90.3%~91.5%.热处理能有效改善合金电极电化学反应的动力学性能,但不同退火时间对合金电极的高倍率放电性能影响不明显.  相似文献   
992.
Aberrant protein aggregation causes numerous neurological diseases including Creutzfeldt-Jakob disease (CJD), but the aggregation mechanisms remain poorly understood. Here, we report AFM results on the formation pathways of β-oligomers and nonfibrillar aggregates from wild-type full-length recombinant human prion protein (WT) and an insertion mutant (10OR) with five additional octapeptide repeats linked to familial CJD. Upon partial denaturing, seeds consisting of 3-4 monomers quickly appeared. Oligomers of ~11-22 monomers then formed through direct interaction of seeds, rather than by subsequent monomer attachment. All larger aggregates formed through association of these β-oligomers. Although both WT and 10OR exhibited identical aggregation mechanisms, the latter oligomerized faster due to lower solubility and, hence, thermodynamic stability. This novel aggregation pathway has implications for prion diseases as well as others caused by protein aggregation.  相似文献   
993.
A general, one-pot, single-step method for producing colloidal silver chalcogenide (Ag(2)E; E = Se, S, Te) nanocrystals is presented, with an emphasis on Ag(2)Se. The method avoids exotic chemicals, high temperatures, and high pressures and requires only a few minutes of reaction time. While Ag(2)S and Ag(2)Te are formed in their low-temperature monoclinic phases, Ag(2)Se is obtained in a metastable tetragonal phase not observed in the bulk.  相似文献   
994.
Fluorescent contrast agents with high specificity and sensitivity are valuable for accurate disease detection and diagnosis. Spherical gold nanoparticles (GNPs) can be smartly utilized for developing highly effective agents. The strong electromagnetic (plasmon) field on their surface can be very effective in influencing the electrons of fluorophores and, thus, manipulating the fluorescence output (i.e., either quenching or enhancement). Fluorescence quenching can be used for negative sensing, or for conditional de-quenching to increase the specificity. Fluorescence enhancement allows sensing to be more sensitive. The level of fluorescence alteration depends on the GNP size, the excitation and emission wavelengths and quantum yield of the fluorophore, and the distance between the GNP and the fluorophore. To understand the mechanisms of the fluorescence change by GNP, we have theoretically analyzed the parameters involved in the fluorescence alteration for commonly used fluorophores, with an emphasis on quenching. The results showed that the fluorescence of fluorophores with the excitation (Ex) and emission (Ex) wavelengths close to the GNP resonance peak tended to be significantly quenched by GNPs. For those fluorophores emitting fluorescence in red or near infrared, to achieve quenching, the distance between GNP and the fluorophore was required to be very short. In general, a shorter distance resulted in more quenching. Bigger GNPs require a shorter distance to achieve the same level of quenching. The fluorescence of a fluorophore with a lower quantum yield (especially the one with emission in far-red or near-infrared) is more difficult to be quenched by GNPs (requires very short distance). Instead, it can be enhanced. Based on the theoretical study, we have developed a near-infrared contrast agent, i.e., Cypate conjugated GNP via a short peptide spacer. Normally the fluorescence of Cypate was quenched. The spacer has a motif of a substrate for urokinase type plasminogen activator (uPA; cancer-secreting enzyme). This contrast agent emits fluorescence only in the presence of uPA, where the uPA cleaves the spacer. This design can be used in characterization of the cancer type and also in diagnosing other diseases with signature enzymes.  相似文献   
995.
Riboswitches regulate gene expression via specific recognition of cognate metabolites by their aptamer domains, which fold into stable conformations upon ligand binding. However, the recently reported solution and crystal structures of the Bacillus subtilis preQ(1) riboswitch aptamer show small but significant differences, suggesting that there may be conformational heterogeneity in the ligand-bound state. We present a structural and dynamic characterization of this aptamer by solution NMR spectroscopy. The aptamer-preQ(1) complex is intrinsically flexible in solution, with two regions that undergo motions on different time scales. Three residues move in concert on the micro-to-millisecond time scale and may serve as the lid of the preQ(1)-binding pocket. Several Ca(2+) ions are present in the crystal structure, one of which binds with an affinity of 47 ± 2 μM in solution to a site that is formed only upon ligand binding. Addition of Ca(2+) to the aptamer-preQ(1) complex in solution results in conformational changes that account for the differences between the solution and crystal structures. Remarkably, the Ca(2+) ions present in the crystal structure, which were proposed to be important for folding and ligand recognition, are not required for either in solution.  相似文献   
996.
We have performed Car-Parrinello molecular dynamics (CPMD) calculations of the hydrogen-bonded NH(3)-HCl dimer. Our main aim is to establish how ionic-orbital coupling in CPMD affects the vibrational dynamics in hydrogen-bonded systems by characterizing the dependence of the calculated vibrational frequencies upon the orbital mass in the adiabatic limit of Car-Parrinello calculations. We use the example of the NH(3)-HCl dimer because of interest in its vibrational spectrum, in particular the magnitude of the frequency shift of the H-Cl stretch due to the anharmonic interactions when the hydrogen bond is formed. We find that an orbital mass of about 100 a.u. or smaller is required in order for the ion-orbital coupling to be linear in orbital mass, and the results for which can be accurately extrapolated to the adiabatic limit of zero orbital mass. We argue that this is general for hydrogen-bonded systems, suggesting that typical orbital mass values used in CPMD are too high to accurately describe vibrational dynamics in hydrogen-bonded systems. Our results also show that the usual application of a scaling factor to the CPMD frequencies to correct for the effects of orbital mass is not valid. For the dynamics of the dimer, we find that the H-Cl stretch and the N-H-Cl bend are significantly coupled, suggesting that it is important to include the latter degree of freedom in quantum dynamical calculations. Results from our calculations with deuterium-substitution show that both these degrees of freedom have significant anharmonic interactions. Our calculated frequency for the H-Cl stretch using the Becke-exchange Lee-Yang-Parr correlation functional compares reasonably well with a previous second-order M?ller-Plesset calculation with anharmonic corrections, although it is low compared to the experimental value for the dimer trapped in a neon-matrix.  相似文献   
997.
The effect of structural parameters of TiO2 nanotube arrays (TNAs) upon their photocatalytic/photoelectro‐catalytic performance is studied by comparing the morphological characteristics and physicochemical properties with different tube lengths prepared from three kinds of electrolytes. The results show that the UV‐Vis absorption edge of TNAs red‐shifted with the increment of tube length and the short TNAs possess higher bandgap energy. The variation tendency of electrochemical window of TNAs is DMSO (5.5 V)>Cit (3.2 V)>HF (1.8 V). The long TNAs possess higher photocatalytic (PC) reactivity suggesting the surface roughness factor is the main determinant of PC efficiency, although, there is obvious recombination effects for the long TNAs. Evidenced by the positive correlation between tube length and photoelectrocatalytic (PEC) efficiency for TNAs from the same electrolyte, the enhancement of the tube length could lead to better PEC reactivity, but when the tube length is over a certain value, the PEC degradation rate no longer increases but decreases. The long TNAs with large surface roughness factor prepared from Cit and DMSO electrolytes exhibit comparative or even lower PEC performance compared with the short TNAs prepared from HF electrolyte, indicating that the PEC performance of TNAs was dominated by charge separation and photoelectron transfer properties rather than surface roughness coefficient and the tube length.  相似文献   
998.
The photodegradation (λ=365 nm) of the biomolecule vitamin B12, catalyzed by the photocatalyst TiO2 nanoparticles (NPs), has been investigated in aqueous suspension. The photodegradation process of vitamin B12 has been monitored by means of electronic absorption (Abs), Fourier‐transform infrared (FT‐IR), and resonance Raman (RR) spectroscopies, respectively. The results show that only under UV illumination in the presence of TiO2 is there effective degradation, and the photocatalytic degradation of vitamin B12 is strongly influenced by the amount of TiO2 NPs, the pH, and the initial concentration of vitamin B12. The photocatalytic reaction kinetics of vitamin B12 conforms to a Langmuir‐Hinshelwood isotherm model. Changes involving the three structural units of the carbon‐metal bond C–Co, the organic corrin macrocycle combined with the benzimidazole nucleotide, and the inorganic CN in the vitamin B12 molecule during the photocatalytic degradation are also discussed.  相似文献   
999.
Coral reef-like PANI nanotubes composed of nanopaticles were successfully synthesized by a reactive template of manganese oxide.The structure was characterized by using SEM,TEM,and FT-IR,and the supercapacitive behaviors of these nanotubes were investigated with cyclic voltammetry(CV),and charge-discharge tests,respectively.A maximum specific capacitance of 533 F/g could be achieved in 1mol/L aqueous H2SO4 with the potential range of -0.2 to 0.8 V(vs.the saturated calomel electrode) in a half-cell setup configuration for PANI electrode,suggesting its potential application in the electrode material for electrochemical capacitors.  相似文献   
1000.
Polyaniline (PANI) was prepared by the chemical oxidative polymerization of aniline, and ZnO, with the mean particle size of 28 nm, was synthesized by a non-aqueous solvent method. The organic-inorganic PANI/ZnO hybrids with different mass fractions of PANI were obtained by mechanically mixing the prepared PANI and ZnO. The gas sensing properties of PANI/ZnO hybrids to different volatile organic compounds (VOCs) including methanol, ethanol and acetone were investigated at a low operating temperature of 90°C. Compared with the pure PANI and ZnO, the PANI/ZnO hybrids presented much higher response to VOCs. Meanwhile, the PANI/ZnO hybrid exhibited a good reversibility and a short response-recovery time, implying its potential application for gas sensors. The sensing mechanism was suggested to be related to the existence of p-n heterojunctions in the PANI/ZnO hybrids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号